The generator matrix

 1  0  1  1  1 X^2+X  1  1  0  1 X^2+X  1  1  1  0  1  1 X^2+X X^2  1  1  1  1  X  1  1  0  1  1 X^2+X  0  1  1  1  1 X^2+X  1  1  0  1  1 X^2+X  1  1 X^2  1  1  X  X  X  X  X  1  X  0 X^2 X^2  0  1  1  1  X  X  X
 0  1 X+1 X^2+X  1  1  0 X+1  1 X^2+X  1 X^2+1 X+1  0  1 X^2+X X^2+1  1  1 X^2 X^2+X+1  X X^2+1  1  0 X+1  1 X^2+X X^2+1  1  1  0 X+1 X^2+X X^2+1  1  0 X+1  1 X^2+X X^2+1  1 X^2 X^2+X+1  1  X  1  1  0 X^2 X^2+X  X X+1  X  X  X  X  X X^2+X+1 X^2+X+1 X+1 X^2+X  0 X^2
 0  0 X^2  0  0  0  0  0  0  0  0  0  0 X^2 X^2 X^2 X^2 X^2 X^2 X^2 X^2 X^2 X^2 X^2  0  0  0  0  0  0  0  0  0 X^2 X^2 X^2 X^2 X^2 X^2  0  0 X^2 X^2 X^2 X^2 X^2 X^2  0  0  0  0 X^2 X^2 X^2 X^2 X^2  0  0  0  0 X^2  0  0  0
 0  0  0 X^2  0  0  0  0 X^2 X^2 X^2 X^2 X^2 X^2 X^2  0 X^2 X^2  0 X^2 X^2  0  0  0 X^2  0  0  0 X^2  0 X^2 X^2 X^2 X^2 X^2  0  0 X^2 X^2  0  0 X^2  0  0  0 X^2  0 X^2  0 X^2  0  0 X^2  0 X^2 X^2  0  0  0 X^2  0  0 X^2  0
 0  0  0  0 X^2  0  0 X^2  0  0  0 X^2 X^2 X^2 X^2 X^2  0 X^2 X^2 X^2  0 X^2  0 X^2  0 X^2  0  0 X^2  0  0  0 X^2 X^2  0 X^2 X^2  0 X^2  0 X^2 X^2 X^2  0 X^2 X^2  0  0 X^2 X^2 X^2  0 X^2  0  0  0 X^2 X^2 X^2  0  0 X^2 X^2 X^2
 0  0  0  0  0 X^2 X^2 X^2 X^2 X^2  0  0 X^2 X^2 X^2  0 X^2  0  0  0  0 X^2 X^2 X^2 X^2  0 X^2  0 X^2  0  0  0  0 X^2  0  0  0 X^2  0 X^2 X^2 X^2 X^2 X^2 X^2  0  0 X^2 X^2  0  0  0  0 X^2  0 X^2  0 X^2  0 X^2 X^2 X^2 X^2  0

generates a code of length 64 over Z2[X]/(X^3) who�s minimum homogenous weight is 60.

Homogenous weight enumerator: w(x)=1x^0+351x^60+335x^64+320x^68+16x^72+1x^124

The gray image is a linear code over GF(2) with n=256, k=10 and d=120.
This code was found by Heurico 1.16 in 0.186 seconds.